Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 449: 139200, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574523

RESUMO

Albino tea has attracted increased attention due to its unique flavor. To reveal the difference in key metabolites constituting the important quality of different tea resources, amino acids and flavonoids profiles in three albino resources with different degrees of albinism and one normal green variety were comprehensively investigated. K-means analysis revealed 35 amino acids were significantly enriched in 'Jibai', while 3 and 2 were specifically accumulated in 'Huangjinya' and 'Anjibaicha', respectively. Based on OPLS-DA models, 40, 31 and 45 significantly differential flavonoids were determined in 'Huangjinya', 'Anjibaicha' and 'Jibai' compared to 'Fudingdabaicha', and most were down-regulated. Among them, 10, 5 and 13 differential flavonoids were exclusively found in 'Huangjinya', 'Anjibaicha' and 'Jibai', respectively, which may contribute to unique quality for different resources. The differential flavonoids and amino acids involved in their metabolic pathways were obviously different among four resources, resulting in the difference in tea quality and flavor.


Assuntos
Aminoácidos , Camellia sinensis , Flavonoides , Chá , Flavonoides/química , Flavonoides/análise , Aminoácidos/análise , Aminoácidos/química , Camellia sinensis/química , Chá/química
2.
Foods ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540854

RESUMO

This study aims to investigate the relationship between the grades of Tuo tea and the quality of compounds. A combination of artificial sensory evaluation, intelligent sensory technologies (electronic nose and electronic tongue), gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC), chemical-physical analysis, and multivariate statistical analysis were employed to examine the differences among three grades of Tuo tea (SG, 1G, and 2G). The results of artificial sensory evaluation, electronic tongue, and electronic nose revealed that the aroma and taste of different grades of Tuo tea varied greatly. A total of 112 volatile compounds and 44 non-volatile compounds were identified. In order to elucidate the key components that cause differences in the quality of Tuo tea, 2 partial least squares discriminant analysis (PLS-DA) models with excellent parameters (volatile, R2Y = 0.999 and Q2 = 0.996; non-volatile, R2Y = 0.992 and Q2 = 0.972) were established. A total of 80 key differential volatile compounds were identified with the double selection criterion of variable importance in projection (VIP) greater than 1 and p < 0.05. Among these, 43 compounds with OAV > 1 were further identified as the odor-active compounds in all three grades of Tuo. Moreover, 22 key non-volatile compounds that contribute to the quality differences have been screened out. This investigation implied that the volatile and non-volatile compounds of Tuo tea could serve as indicators of its quality. The results provided a new approach to distinguish the grades of Tuo tea.

3.
Food Chem X ; 21: 101077, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38226324

RESUMO

Blister blight, as one of the most threatening and damaging disease worldwide, mainly infects young organs and tissues seriously affecting tea growth and quality. In this study, the spread of pathogen on tea leaves were examined by toluidine blue staining, scanning electron microscope and transmission electron microscope analysis. The composition and abundance of fungal community on leaf tissues were firstly analyzed. Sensory evaluation and metabolites analysis indicated that diseased tea leaves had strong sweet taste and soluble sugars contributed significantly to the taste, while metabolites showing bitter and astringent taste (caffeine, catechins) were significantly decreased. According to the biological functions of differential metabolites, sugars including 7 monosaccharides (d-xylose, d-arabinose, d-mannose, d-glucuronic acid, glucose, d-galactose and d-fructose), 2 disaccharide (sucrose and maltose) and 1 trisaccharide (raffinose) were the main differential sugars increased in content (>2 fold change), which was of great significance to sweet taste of diseased tea.

4.
Org Lett ; 26(1): 94-99, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38149595

RESUMO

8-Aminoquinoline (AQ) has proven to be a highly effective bidentate directing group for palladium-catalyzed C-H functionalization reactions. However, enantiocontrol of AQ-directed C(sp3)-H functionalization reactions has been challenging. Herein, a new protocol is presented for the Pd-catalyzed enantioselective arylation of unactivated ß C(sp3)-H bonds of alkyl carboxamides with aryl iodides using a C5-iodinated 8-aminoquinolines (IQ) auxiliary in conjugation with a BINOL ligand. Additionally, a C5-aryl substituted 8-aminoquinoline auxiliary can facilitate enantioselective alkenylation and alkynylation of benzylic C(sp3)-H bonds of 3-arylpropanamides with the corresponding bromide reagents under similar conditions.

5.
Mol Genet Genomics ; 298(6): 1559-1578, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37922102

RESUMO

Tea plant (Camellia sinensis L.), whose leaves are the major reproductive organs, has been cultivated and consumed widely for its economic and health benefits. The Knotted1-like Homeobox (KNOX) proteins play significant roles in leaf morphology formation and development. However, the functions of KNOX proteins in tea plants are still unknown. Here, 11 CsKNOX genes from the tea plants were cloned and divided into Class I, II, and KNATM clades based on their protein sequences. These 11 CsKNOX genes were mapped on 8 out of 15 tea plant chromosomes, all localized in the nucleus. Specific spatiotemporal expression patterns of CsKNOX genes were found in various tissues and different development periods of buds, flowers, and roots of tea plants. Meanwhile, transcript levels of CsKNOX in tea leaves were strongly correlated with the accumulation of flavan-3-ols and proanthocyanidins. It was found that most of the CsKNOX genes could respond to drought, salt, cold, and exogenous MeJA and GA3 by analysis of transcriptomics data and promoter elements. The protein interaction analysis showed that CsKNOX could cooperate with CsAS1 and other critical functional proteins. In conclusion, this research provided the basic information for the functions of the CsKNOX family during organogenesis and stress response in tea plants, which was necessary for further functional characterization verification.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Sequência de Aminoácidos , Chá
6.
Food Res Int ; 173(Pt 1): 113272, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803583

RESUMO

Teas infected with bird's eye spot disease generally exhibited a lingering and long-lasting, salicin-like bitter taste, which was unpalatable to consumers. Sensory-directed isolation processes have been performed in this study to investigate the salicin-like bitter compounds in infected teas. Results showed that infected teas were extracted using a 70% methanol aqueous solution to produce methanol extract, which was then further separated by sequential solvent extraction (SSE) to obtain dichloromethane extract, which contained the salicin-like bitter compounds. The dichloromethane extract was then isolated by flash chromatography to produce two salicin-like bitter fractions, eluted using 60% and 65% methanol aqueous solution. Finally, these two salicin-like bitter fractions were analyzed by RP-HPLC using 60-68% and 70-75% methanol aqueous solution, respectively, affording the location of the salicin-like bitter compounds in RP-HPLC chromatograms. Moreover, a new ursane-type triterpenoid, camellisin A methyl ester, was identified from infected teas. This study has provided preliminary isolation methods of salicin-like bitter compounds from the infected teas, which were essential to designing targeted debittering strategies for infected teas and improving the quality of the finished tea and the effective utilization of fresh tea leaves.


Assuntos
Metanol , Paladar , Cloreto de Metileno , Chá/química
7.
Food Chem ; 429: 136992, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37516054

RESUMO

Tea head, a derivative product of Pu-erh tea, are tight tea lumps formed during pile-fermentation. The aim of this study was to reveal the differences of quality-related metabolites and microbial communities between ripened Pu-erh tea (PE-21) and tea heads (CT-21). Compared with PE-21, CT-21 showed a more mellow and smooth taste with slight bitterness and astringency, and can withstand multiple infusions. Metabolites analysis indicated CT-21 had more abundant water-soluble substances (47.39%) and showed significant differences with PE-21 in the main compositions of amino acids, catechins and saccharides which contributed to the viscosity of tea liquor, mellow taste and the tight tea lumps formation. Microbial communities and COG annotation analysis revealed CT-21 had lower abundance of Bacteria (84.05%), and higher abundance of Eukaryota (15.10%), carbohydrate transport and metabolism (8.28%) and glycoside hydrolases (37.36%) compared with PE-21. The different microbial communities may cause metabolites changes, forming distinct flavor of Pu-erh.


Assuntos
Catequina , Microbiota , Chá/química , Bactérias/genética , Fermentação
8.
Food Res Int ; 167: 112643, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087235

RESUMO

Tea infected with bird's eye spot disease generally imparts a long-lasting bitter taste, which is unacceptable to most consumers. This study has comprehensively evaluated the taste profiles of infected and healthy teas and investigated their known bitter compounds previously reported in tea. Quantification analyses and calculation of dose-over-threshold (DoT) factors revealed that no obvious difference was visualized in catechins, caffeine, bitter amino acids, and flavonols and their glycosides between infected and healthy tea samples, which was also verified by principal component analysis (PCA) and hierarchical cluster analysis (HCA). Therefore, these known bitter compounds have been ruled out as critical contributors to the long-lasting bitterness of infected teas. Furthermore, Gel permeation chromatography, sensory analysis, and UPLC-Q-TOF-MS were employed and identified 13 substances from the target bitter fractions, including caffeine, ten triterpenoids, and two oxylipins. The higher triterpenoid levels were supposed to be the reason causing the long-lasting bitterness. This study has provided a research direction for the molecular basis of the long-lasting bitterness of infected tea leaves with bird's eye spot disease.


Assuntos
Cafeína , Triterpenos , Cafeína/análise , Paladar , Triterpenos/análise , Glicosídeos/análise , Chá/química
9.
Phytopathology ; 113(3): 516-527, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36972529

RESUMO

Leaf spots are the most damaging and common foliar diseases of tea and are caused by several species of fungi. During 2018 to 2020, leaf spot diseases showing different symptoms (large and small spots) were observed in commercial tea plantations in Guizhou and Sichuan provinces of China. The pathogen causing the two different sized leaf spots was identified as the same species (Didymella segeticola) based on morphological characteristics, pathogenicity, and multilocus phylogenetic analysis using the combined ITS, TUB, LSU, and RPB2 gene regions. Microbial diversity analysis of lesion tissues from small spots on naturally infected tea leaves further confirmed Didymella to be present as the main pathogen. Results of sensory evaluation and quality-related metabolite analysis of tea shoots infected with the small leaf spot symptom indicated that D. segeticola negatively affected the quality and flavor of tea by changing the composition and content of caffeine, catechins, and amino acids. In addition, the significantly reduced amino acid derivatives in tea are confirmed to be positively associated with the enhanced bitter taste. The results improve our understanding of the pathogenicity of Didymella species and the influence of Didymella on the host plant, Camellia sinensis.


Assuntos
Camellia sinensis , Doenças das Plantas , Filogenia , China , Chá
10.
Food Chem ; 412: 135534, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36732104

RESUMO

Characteristic metabolites including tea polyphenols, amino acids, catechins, caffeine, sugars and anthocyanins were fully analyzed by high performance liquid chromatography (HPLC), gas chromatography tandem mass spectrometry (GC-MS) and ultra-high performance liquid chromatography (UHPLC)-ESI-tandem mass spectrometry (MS/MS), and showed significant differences among Zijuan tea from different plantations in Yunnan province (YN-ZJ), Qijiang (QJ-ZJ) and Ersheng (ES-ZJ) district, China, indicating that Zijuan is significantly influenced by growth conditions. Monosaccharides were the most abundant soluble sugars in YN-ZJ and ES-ZJ, while disaccharides was abundant in QJ-ZJ. d-galactose, d-mannose, d-sorbitol, inositol, d-glucose, d-galacturonic acid and raffinose involved in galactose metabolism were significantly changed (P < 0.05). Delphinidin, cyanidin, pelargonidin and their glycoside derivatives were the major anthocyanins, and showed significant differences among Zijuan samples. Flavonoids and procyanidins abundant in Zijuan provided more substrates for anthocyanins accumulation. This study presented comprehensive chemical profiling and characterized metabolites of Zijuan in different tea plantations.


Assuntos
Antocianinas , Camellia sinensis , Antocianinas/análise , Camellia sinensis/química , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , China , Chá/química , Açúcares/metabolismo , Cromatografia Líquida de Alta Pressão/métodos
11.
Compr Rev Food Sci Food Saf ; 22(1): 187-232, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36382875

RESUMO

The bitter taste is generally considered an undesirable sensory attribute. However, bitter-tasting compounds can significantly affect the overall flavor of many foods and beverages and endow them with various beneficial effects on human health. To better understand the relationship between chemical structure and bitterness, this paper has summarized the bitter compounds in foodstuffs and classified them based on the basic skeletons. Only those bitter compounds that are confirmed by human sensory evaluation have been included in this paper. To develop food products that satisfy consumer preferences, correctly ranking the key bitter compounds in foodstuffs according to their contributions to the overall bitterness intensity is the precondition. Generally, three methods were applied to screen out the key bitter compounds in foods and beverages and evaluate their sensory contributions, including dose-over-threshold factors, taste dilution analysis, and spectrum descriptive analysis method. This paper has discussed in detail the mechanisms and applications of these three methods. Typical procedures for separating and identifying the main bitter compounds in foodstuffs have also been summarized. Additionally, the activation of human bitter taste receptors (TAS2Rs) and the mechanisms of bitter taste transduction are outlined. Ultimately, a conclusion has been drawn to highlight the current problems and propose potential directions for further research.


Assuntos
Percepção Gustatória , Paladar , Humanos , Preferências Alimentares , Alimentos
12.
Foods ; 11(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36141056

RESUMO

Fixation is the most critical step in the green tea process. Hence, this study developed a rapid and accurate moisture content detection for the green tea fixation process based on near-infrared spectroscopy and computer vision. Specifically, we created a quantitative moisture content prediction model appropriate for the processing of green tea fixation. First, we collected spectrum and image information of green tea fixation leaves, utilizing near-infrared spectroscopy and computer vision. Then, we applied the partial least squares regression (PLSR), support vector regression (SVR), Elman neural network (ENN), and Elman neural network based on whale optimization algorithm (WOA-ENN) methods to build the prediction models for single data (data from a single sensor) and mid-level data fusion, respectively. The results revealed that the mid-level data fusion strategy combined with the WOA-ENN model attained the best effect. Namely, the prediction set correlation coefficient (Rp) was 0.9984, the root mean square error of prediction (RMSEP) was 0.0090, and the relative percent deviation (RPD) was 17.9294, highlighting the model's excellent predictive performance. Thus, this study identified the feasibility of predicting the moisture content in the process of green tea fixation by miniaturized near-infrared spectroscopy. Moreover, in establishing the model, the whale optimization algorithm was used to overcome the defect whereby the Elman neural network falls into the local optimum. In general, this study provides technical support for rapid and accurate moisture content detection in green tea fixation.

13.
Chem Sci ; 12(16): 5804-5810, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-34168804

RESUMO

A highly efficient and versatile method for construction of peptide macrocycles via palladium-catalyzed intramolecular S-arylation of alkyl and aryl thiols with aryl iodides under mild conditions is developed. The method exhibits a broad substrate scope for thiols, aryl iodides and amino acid units. Peptide macrocycles of a wide range of size and composition can be readily assembled in high yield from various easily accessible building blocks. This method has been successfully employed to prepare an 8-million-membered tetrameric cyclic peptide DNA-encoded library (DEL). Preliminary screening of the DEL library against protein p300 identified compounds with single digit micromolar inhibition activity.

14.
Bioengineered ; 12(1): 1251-1263, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33904375

RESUMO

Processing method is considered as a major factor that affects biotransformation of phytochemicals in tea and leads to diverse flavor and bioactivity of tea. In the present work, six typical tea manufacturing processings were employed to compare the effect on chemical composition of teas through using leaves of the single tea cultivar - - Camellia sinensis var. Meizhan. And in vitro antioxidant activity, inhibition against α-glucosidase and three lipid metabolism enzymes of these teas were also investigated, the relationships among them were analyzed further. As fresh leaves were processed into six categories of teas, the content of total catechins (TCs) has decreased in varying degrees while theaflavins (TFs) has increased. The antioxidant capacity composite index (ACCI) from high to low were green tea, yellow tea, oolong tea, white tea, dark tea, and black tea with the range from 98.44 to 58.38, which dominated by the content of TCs. Furthermore, all categories of teas possessed an inhibition effect on the pancreatic lipase (PL), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-COA reductase), lecithin cholesterol acyltransferase (LCAT), and α-glucosidase. The inhibition rate of PL and α-glucosidase appears to be positively influenced by TFs content (r =0.863, r =0.857, p < 0.05) while that of LCAT showed significant positive correlations with the content of tea polyphonels (TPs) (r = 0.902, p < 0.01). These results provide a better understanding of the relationships between processing method and chemical components of tea. It is suggested that various tea categories possess potential healthy effects which could serve as promising nutritional supplements.[Figure: see text].


Assuntos
Camellia sinensis/química , Compostos Fitoquímicos/análise , Antioxidantes/análise , Inibidores de Glicosídeo Hidrolases/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , alfa-Glucosidases/metabolismo
15.
J Food Sci Technol ; 58(4): 1378-1388, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33746266

RESUMO

In order to explore the taste characteristics and molecular sensory basis of Chinese yellow tea, in this study, quantitative descriptive analysis (QDA) and partial least squares regression (PLSR) were used to analyze the sensory characteristics and chemical components of 15 yellow tea samples from different regions of China. The results showed that: 11 sensory descriptors and their definitions were obtained by QDA, namely, sweet, umami, bitter, sour, astringent, sweet after taste, mellow, neutral, after-taste, thick and tainted taste. The results of variance indicated that there were significant variation in taste sub-attributes of different samples (p <0.05). Principal component analysis indicated that there was a positive correlation between bitter and astringent, between sweet, umami and sour, and between mellow, thick, after-taste and neutral. All yellow tea samples were divided into four categories according to cluster analysis. The results of PLSR showed that there were 22 chemical components that had an important contribution to the taste characteristics of yellow tea, and the chemical components that had an important influence on each taste component were obtained. The identification of key contribution components of taste characteristics in yellow teas will provide a theoretical basis for further research on the directional adjustment and control of tea taste quality.

16.
Plant Dis ; 105(5): 1474-1481, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33258436

RESUMO

Brown blight, as the most damaging and common foliar disease of the tea plant (Camellia sinensis) in China, has been recently reported to be caused by different species of the genus Colletotrichum. During the years 2016 to 2017, tea plants in commercial tea cultivation areas of Chongqing City that reported significant incidences of brown blight disease were investigated and then analyzed using both morphological characteristics and multilocus phylogenetic analysis. The results showed that at least five species of Colletotrichum were identified, including four well-known species (Colletotrichum gloeosporioides, C. camelliae, C. fioriniae, and C. karstii) and one novel species (C. chongqingense), indicating that there is remarkable species diversity in Colletotrichum spp. present as pathogens. Results of pathogenicity analyses confirmed that C. chongqingense was the causal agent of brown blight and different isolates differed in virulence. C. chongqingense, as a novel pathogen, has never been reported as being associated with brown blight disease in tea plants or anthracnose in other host plants anywhere in the world. Knowledge of the Colletotrichum populations will facilitate further studies addressing the relationships between Colletotrichum spp. and their host plant Camellia sinensis.


Assuntos
Camellia sinensis , Colletotrichum , Colletotrichum/genética , Filogenia , Doenças das Plantas
17.
Plant Physiol Biochem ; 155: 898-913, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32916640

RESUMO

The histone deacetylases (HDACs) are involved in growth, development and stress responses in many plants. However, the functions of HDACs in tea plant (Camellia sinensis L. O. Kuntze) and other woody plants remain unclear. Here, 18 CsHDAC genes were identified by genome-wide analysis in tea plant. The phylogenetic analysis demonstrated that the CsHDAC proteins were divided into three subfamilies, namely, the RPD3/HDA1 subfamily (8 members), the SIR2 subfamily (4 members) and the plant specific HD2 subfamily (6 members). The expression patterns showed that most members of CsHDACs family were regulated by different abiotic stress. High correlation was found between the expression of the CsHDACs and the accumulation of theanine, catechin, EGCG and other metabolites in tea plant. Most of the CsHDAC proteins were negative regulators. We further studied a specific gene CsHD2C (NCBI-ID: KY364373) in tea plant, which is the homolog of AtHD2C, encoded a protein of 306 aa. CsHD2C was highly expressed in leaves, young buds and stems. The transcription of CsHD2C was inhibited by ABA, NaCl and low temperature. It was found localized in the nucleus when fused with a YFP reporter gene. Overexpression of CsHD2C can rescue the phenotype related to different abiotic stresses in the mutant of AtHD2C in Arabidopsis. The stress-responsive genes RD29A, RD29B, ABI1 and ABI2 were also investigated to understand the regulating role of CsHD2C under abiotic stresses. We also found that CsHD2C could renew the change of acetylation level for histone H4 and the RNAP-II occupancy accumulation in the promoter of abiotic stress responses gene in the hd2c Arabidopsis mutant. Together, our results suggested that CsHD2C may act as a positive regulator in abiotic stress responses in tea plant.


Assuntos
Camellia sinensis/genética , Histona Desacetilases/genética , Proteínas de Plantas/genética , Camellia sinensis/enzimologia , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Estresse Fisiológico
18.
Phytochemistry ; 180: 112515, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32957017

RESUMO

Conventional wisdom holds that tea (Camellia sinensis) quality can be improved by drought. To clarify the underlying mechanism, a conjoint analysis of transcriptome and metabolome profiling was carried out in tea shoots harvested under different soil water contents (SWCs). Drought had little impact on theanine, catechins and caffeine in field conditions. Besides the flavor contributions of amino acid and their derivatives, organic acids, and nucleotides and their derivatives, the obviously increased isoflavonoids and glycosylflavonoids and the sharply decreased lipids are suggested to play key roles, which is mainly due to substantial increases of type III polyketide synthase B (PKSB), flavonol synthase/flavanone 3-hydroxylase (FLS), and UDP-glycosyltransferases (UGTs), as well as the significant repression of anthocyanidin synthase (ANS) and R2R3MYBs, and downregulated lipid metabolisms. Genes of GDSL esterase/lipase (GDSL), abscisic acid (ABA) and jasmonate (JA) signaling were found to play important roles in both flavonoid accumulation and lipid reduction. These findings increased our understanding of how moderate drought improves taste and aroma of tea by interfering in the metabolism of fresh leaves, which provides new insight into balancing compounds in pre-harvest tea shoots.


Assuntos
Camellia sinensis , Secas , Metaboloma , Folhas de Planta , Melhoria de Qualidade , Chá , Transcriptoma
19.
Food Res Int ; 136: 109355, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846541

RESUMO

Fangping green tea (FPGT) produced by Zhonghuang 1 (C. sinensis var. sinensis cv. Zhonghuang 1), a new tea variety, has a classical cooked corn-like aroma, which is completely different from the green tea aroma. In order to illustrate the aroma characteristics of the green tea, the volatiles of FPGT was analyzed with gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O). The results showed that odor activity value (OAV) of dimethyl sulfide (DMS) was 1195.21 and the odor intensity about DMS was 6.2 in FPGT. Aroma recombination experiment also confirmed the important contribution of DMS to cooked corn-like aroma. Aroma character impact (ACI) values of DMS in tea processed by Zhonghuang 1 and Fudingdabai were 72.01% and 37.86%, respectively. This indicated that the high proportion of DMS was the dominant character of green tea with cooked corn-like aroma. In addition, the S-methylmethionine (SMM) content in fresh leaves of Zhonghuang 1 (0.21 mg/g) was significantly higher than that of Fudingdabai (0.16 mg/g), which was an important reason for high DMS content.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise , Chá , Compostos Orgânicos Voláteis/análise , Zea mays
20.
Food Res Int ; 136: 109483, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846565

RESUMO

Mineral elements and stable isotopes combined with stoichiometric methods were used as a potential tool for first authenticating Chinese tea according to it's production year. A total of 86 mineral elements and stable isotope compositions were determined from the Xiangzhujing Pu'er tea in five different production years using ICP-MS and ICP-OES. On the basis of 78 statistically significant mineral elements and stable isotopes, HCA, PCA, PLS-DA, BP-ANN, and LDA were employed to build authentication models for predicting the Pu'er tea with different production years. The clustering results of the HCA and PCA were worse than that of PLS-DA, BP-ANN, and LDA. The PLS-DA model displayed a perfect model performance (R2X = 0.86, R2Y = 0.974, and Q2 = 0.922). The authentication performance of LDA and BP-ANN revealed their 100% recognition sensitivity and prediction ability and was thus better than that of PLS-DA. Mn, 68Zn, and 203Tl were the markers for enabling the successful authentication of Pu'er tea with different production years. This study contributes toward generalizing the use of mineral element and stable isotope fingerprinting combined with LDA and BP-ANN as a promising tool for authentication of tea worldwide.


Assuntos
Camellia sinensis , Chá , Análise por Conglomerados , Isótopos , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA